Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Regular Examinations November/December-2022 NEURAL NETWORKS AND FUZZY LOGIC

(Electrical and Electronics Engineering)
Max. Marks: 60
Time: 3 hours
(Answer all Five Units $5 \times 12=60$ Marks)
UNIT-I
1 a Explain characteristics of Artificial neural network.
L1 6M
b Implement a perceptron to solve simple AND problem with two inputs.
L3 6M
OR
2 a What is generalization? Explain about generalization $\quad \mathbf{L 2} \quad \mathbf{6 M}$
b How artificial neuron is inspired from the biological neuron? Explain.
L2 6M
UNIT-II
3 Explain input layer, hidden layer \&output layer computations in multi-layer $\quad \mathbf{L 3} \quad \mathbf{1 2 M}$ feed forward networks.

OR
4 Explain the weight adjustment procedure in MLFFN using back propagation
algorithm.
UNIT-IIII
5 Discuss about the bidirectional associative memory with an example. \quad L4 $\quad \mathbf{1 2 M}$
OR
6 Explain in detail recurrent associative memory.
UNIT-IV
7 a Consider two fuzzy subsets of the set $X, X=\{a, b, c, d, e\}$ referred to as A
L3 8M and B .
$A=\{1 / \mathrm{a}, 0.3 / \mathrm{b}, 0.2 / \mathrm{c} 0.8 / \mathrm{d}, 0 / \mathrm{e})$ and
$B=\{0.6 / \mathrm{a}, 0.9 / \mathrm{b}, 0.1 / \mathrm{c}, 0.3 / \mathrm{d}, 0.2 / \mathrm{e}\}$
Find:.
(i) Complement.
(ii) Union.
(iii) Intersection
(iv) Difference
b Explain fuzzy intersection operation
L1 4M

OR

8 a Two Fuzzy sets $\tilde{\mathrm{A}}$ and $\tilde{\mathrm{N}}$ are defined on X as follows.
L3 6M

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}
$\tilde{\mathrm{~A}}$	0.1	0.3	0.7	0.8	0.6
$\tilde{\mathrm{~N}}$	0.9	0.2	0.3	0.6	0.5

Find the following α cut sets
(i) $(\tilde{\mathrm{A}} \cap \tilde{\mathrm{N}})_{0.2}$
(ii) $(\tilde{A} \cup \tilde{N})_{0.5}$
(iii) $(\tilde{\mathrm{A}} \cap \tilde{\mathrm{A}})_{0.8}$.
b With neat block diagram explain the fuzzy control.
L2 6M

UNIT-V

9 a Discuss any one fuzzy logic application in electrical engineering
L5 10M
b List the advantages and disadvantages of fuzzy logic control

OR

10 a Obtain defuzzified value by using centroid method for the following L5 $\mathbf{8 M}$ membership functions.

μ

A

b List the de-fuzzification methods. Explain any one method with a simple L3 $\mathbf{4 M}$ example.

